Macroscopic Coherence Explained

Coherence is a general property of a system whereby the components of that system all act in a similar manner. Coherent light is what makes lasers what they are – an alignment of photons, or waveform phases (why cats chase them is a little harder to explain). Superconductivity, a property of zero resistance to electrical flow that was formerly only observed at temperatures near absolute zero, is closely related in that the atoms of the superconducting material are aligned coherently. Quantum entanglement is an example of perfect coherence between two or more particles, in that they act as a single particle no matter how far away from each other you take them. Einstein famously referred to this property as “spooky action at a distance.” The Bose-Einstein condensate is another state of matter that exists at extremely low temperatures and involves a system of particles that have all achieved the lowest quantum state, and hence, are coherent.

Over the years, clever experimental scientists have pushed the boundaries of coherence from extreme cryogenics and quantum scales to room temperatures and macroscopic scales. Author and fellow truth seeker Anthony Peake posted an article today about experiments that are being done at various research institutes which demonstrate how the contents of liquid containers connected by arbitrarily thin channels exhibit “action at a distance” macroscopically.

Once again, such anomalies have scientists scratching their heads for explanations; that is, scientists who cling to the never-proven pre-assumed dogma of objective materialism. Entanglement and macroscopic action at a distance find no home in this religion.

However, over here at “Consciousness-based Digital Reality” Central, we enjoy the simplicity of fitting such anomalies into our model of reality. 🙂

It all follows from three core ideas:

  1. That all matter is ultimately comprised of data (“it from bit” as John Wheeler would say) and that forces are simply the rules of how the complex data structures that form particles interact with each other.
  1. That consciousness, which is also organized data, interacts with the components of reality according to other rules of the overall system (this greater System being “reality”, “the universe”, God, “all that there is” or whatever you want to call it).
  1. The System evolves according to what Tom Campbell calls the “Fundamental Rule.” Similar to evolution, the system changes state and evolves in the direction of more profitable or useful states and away from less useful states.

Because of #3, our system has evolved to be efficient. As such, it would likely not be wasteful. So, when an observer observes (consciousness interacts with) a pair of particles in proximity to each other, the system sets their states (collapsing the wave function) and the rules of their behavior (a finite state machine) to be coherent simply out of efficiency. That is, each particle is set to the same finite state machine, and forever behaves that way no matter how far apart you take them (distance being a virtual concept in a virtual digital world).

So what prevents the same logic from applying to macroscopic collections of coherent particles? Nothing. In fact, it is inevitable. These clever scientists have learned methods to establish a coherent identical quantum state across huge quantities of particles (aka macroscopic). At the point in which the experimenter creates this state and observes it, the system establishes the state machines for all of them at once, since they are all to be in the same quantum state. And so we get room temperature superconductivity and macroscopic containers of liquid that demonstrate non-locality.

carl

Non-locality Explained!

A great article in Scientific American, “A Quantum Threat to Special Relativity,” is well worth the read.

Locality in physics is the idea that things are only influenced by forces that are local or nearby.  The water boiling on the stovetop does so because of the energy imparted from the flame beneath.  Even the sounds coming out of your radio are decoded from the electromagnetic disturbance in the air next to the antenna, which has been propagating from the radio transmitter at the speed of light.  But, think we all, nothing can influence anything remotely without a “chain reaction” disturbance, which according to Einstein can not exceed the speed of light.

However, says Quantum Mechanics, there is something called entanglement.  No, not the kind you had with Becky under the bleachers in high school.  This kinds of entanglement says that particles that once “interacted” are forever entangled, whereby their properties are reflected in each other’s behavior.  For example, take 2 particles that came from the same reaction and separate them by galactic distances.  What one does, the other will follow.  This has been proven to a distance of at least 18 km and seems to violate Einstein’s theory of Special Relativity.

Einstein, of course, took issue with this whole concept in his famous EPR paper, preferring to believe that “hidden variables” were responsible for the effect.  But, in 1964, physicist John Bell developed a mathematical proof that no local theory can account for all of Quantum Mechanics experimental results.  In other words, the world is non-local.  Period.  It is as if, says the SciAm article, “a fist in Des Moines can break a nose in Dallas without affecting any other physical thing anywhere in the heartand. ”  Alain Aspect later performed convincing experiments that demonstrated this non-locality.  45 years after John Bell’s proof, scientists are coming to terms with the idea that the world is non-local and special relativity has limitations.  Both ideas are mind-blowing.

But, as usual, there are a couple of clever paradigms that get around it all, each of which are equally mind-blowing.  In one, our old friend the “Many Worlds” theory, zillions of parallel universes are spawned every second, which account for the seeming non-locality of reality.  In the other, “history plays itself out not in the three-dimensional spacetime of special relativity but rather this gigantic and unfamiliar configuration space, out of which the illusion of three-dimensionality somehow emerges.”

I have no problem explaining all of these ideas via programmed reality.

Special Relativity has to do with our senses, not with reality.  True simultaneity is possible because our reality is an illusion.  And there is no speed limit in the truer underlying construct.  So particles have no problem being entangled.

Many Worlds can be implemented by multiple instances of reality processes.  Anyone familiar with computing can appreciate how instances of programs can be “forked” (in Unix parlance) or “spawned” (Windows, VMS, etc.).  You’ve probably even seen it on your buggy Windows PC, when instances of browsers keep popping up like crazy and you can’t kill the tasks fast enough and end up either doing a hard shutdown or waiting until the little bastard blue-screens.  Well, if the universe is just run by a program, why can’t the program fork itself whenever it needs to, explaining all of the mysteries of QM that can’t be explained by wave functions.

And then there is “configuration space.”  Nothing more complex than multiple instances of the reality program running, with the conscious entity having the ability to move between them, experiencing reality and all the experimental mysteries of Quantum Mechanics.

Hey physicists – get your heads out of the physics books and start thinking about computer science!

(thanks to Poet1960 for allowing me to use his great artwork)

Non-locality explained