Things We Can’t Feel – The Mystery Deepens

In my last blog “Things We Can’t See”, we explored the many different ways that our eyes, brains, and/or technology can fool us into seeing something that isn’t there or not seeing something that is.

So apparently, our sense of sight is not necessarily the most reliable sense in terms of identifying what is and isn’t in our objective reality.  We would probably suspect that our sense of touch is fairly foolproof; that is, if an object is “there”, we can “feel” it, right?

Not so fast.

First of all, we have a lot of the same problems with the brain as we did with the sense of sight.  The brain processes all of that sensory data from our nerve endings.  How do we know what the brain really does with that information?  Research shows that sometimes your brain can think that you are touching something that you aren’t or vice versa.  People who have lost limbs still have sensations in their missing extremities.  Hypnosis has been shown to have a significant effect in terms of pain control, which seems to indicate the mind’s capacity to override one’s tactile senses.  And virtual reality experiments have demonstrated the ability for the mind to be fooled into feeling something that isn’t there.

In addition, technology can be made to create havoc with our sense of touch, although the most dramatic of such effects are dozens of years into the future.  Let me explain…

Computer Scientist J. Storrs Hall developed the concept of a “Utility Fog.”  Imagine a “nanoscopic” object called a Foglet, which is an intelligent nanobot, capable of communicating with its peers and having arms that can hook together to form larger structures.  Trillions of these Foglets could conceivably fill a room and not be at all noticeable as long as they were in “invisible mode.”  In fact, not only might they be programmed to appear transparent to the sight, but they may be imperceptible to the touch.  This is not hard to imagine, if you allow that they could have sensors that detect your presence.  For example, if you punch your fist into a swarm of nanobots programmed to be imperceptible, they would sense your motion and move aside as you swung your fist through the air.  But at any point, they could conspire to form a structure – an impenetrable wall, for example.  And then your fist would be well aware of their existence.  In this way, technology may be able to have a dramatic effect on our complete ability to determine what is really “there.”

nanobot

But even now, long before nanobot swarms are possible, the mystery really begins, as we have to dive deeply into what is meant by “feeling” something.

Feeling is the result of a part of our body coming in contact with another object.  That contact is “felt” by the interaction between the molecules of the body and the molecules of the object.

Even solid objects are mostly empty space.  If subatomic particles, such as neutrons, are made of solid mass, like little billiard balls, then 99.999999999999% of normal matter would still be empty space.  That is, of course, unless those particles themselves are not really solid matter, in which case, even more of space is truly empty, more about which in a bit.

So why don’t solid objects like your fist slide right through other solid objects like bricks?  Because of the repulsive effect that the electromagnetic force from the electrons in the fist apply against the electromagnetic force from the electrons in the brick.

But what about that neutron?  What is it made of?  Is it solid?  Is it made of the same stuff as all other subatomic particles?

The leading theories of matter do not favor the idea that subatomic particles are like little billiard balls of differing masses.  For example, string theorists speculate that all particles are made of the same stuff; namely, vibrating bits of string.  Except that they each vibrate at different frequencies.  Problem is, string theory is purely theoretical and really falls more in the mathematical domain than the scientific domain, inasmuch as there is no supporting evidence for the theory.  If it does turn out to be true, even the neutron is mostly empty space because the string is supposedly one-dimensional, with a theoretical cross section of a Planck length.

Here’s where it gets really interesting…

Neutrinos are an extremely common yet extremely elusive particle of matter.  About 100 trillion neutrinos generated in the sun pass through our bodies every second.  Yet they barely interact at all with ordinary matter.  Neutrino capture experiments consist of configurations such as a huge underground tank containing 100,000 gallons of tetrachloroethylene buried nearly a mile below the surface of the earth.  100 billion neutrinos strike every square centimeter of the tank per second.  Yet, any particular molecule of tetrachloroethylene is likely to interact with a neutrino only once every 10E36 seconds (which is 10 billion billion times the age of the universe).

The argument usually given for the neutrino’s elusiveness is that they are massless (and therefore not easily captured by a nucleus) and charge-less (and therefore not subject to the electromagnetic force).  Then again, photons are massless and charge-less and are easily captured, to which anyone who has spent too much time in the sun can attest.  So there has to be some other reason that we can’t detect neutrinos.  Unfortunately, given the current understanding of particle physics, no good answer is forthcoming.

And then there is dark matter.  This concept is the current favorite explanation for some anomalies around orbital speeds of galaxies.  Gravity can’t explain the anomalies, so dark matter is inferred.  If it really exists, it represents about 83% of the mass in the universe, but doesn’t interact again with any of the known forces with the exception of gravity.  This means that dark matter is all around us; we just can’t see it or feel it.

So it seems that modern physics allows for all sorts of types of matter that we can’t see or feel.  When you get down to it, the reason for this is that we don’t understand what matter is at all.  According to the standard model of physics, particles should have no mass, unless there is a special quantum field that pervades the universe and gives rise to mass upon interacting with those particles.  Unfortunately, for that to have any credibility, the signature particle, the Higgs boson, would have to exist.  Thus far, it seems to be eluding even the most powerful of particle colliders.  One alternative theory of matter has it being an emergent property of particle fluctuations in the quantum vacuum.

For a variety of reasons, some of which are outlined in “The Universe – Solved!” and many others which have come to light since I wrote that book, I suspect that ultimately matter is simply a property of an entity that is described purely by data and a set of rules, driven by a complex computational mechanism.  Our attempt to discover the nature of matter is synonymous with our attempt to discover those rules and associated fundamental constants (data).

In terms of other things that we can’t perceive, new age enthusiasts might call out ghosts, spirits, auras, and all sorts of other mysterious invisible and tenuous entities.

starwarsghosts

Given that we know that things exist that we can’t perceive, one has to wonder if it might be possible for macroscopic objects, or even macroscopic entities that are driven by similar energies as humans, to be made from stuff that we can only tenuously detect, not unlike neutrinos or dark matter.  Scientists speculate about multiple dimensions and parallel universes via Hilbert Space and other such constructs.  If such things exist (and wouldn’t it be hypocritical of anyone to speculate or work out the math for such things if it weren’t possible for them to exist?), the rules that govern our interaction with them, across the dimensions, are clearly not at all understood.  That doesn’t mean that they aren’t possible.

In fact, the scientific world is filled with trends leading toward the implication of an information-based reality.

In which almost anything is possible.

Things We Can Never Comprehend

Have you ever wondered what we don’t know?  Or, to put it another way, how many mysteries of the universe are still to be discovered?

To take this thought a step further, have you ever considered that there may be things that we CAN’T understand, no matter how hard we try?

This idea may be shocking to some, especially to those scientists who believe that we are nearing the “Grand Unified Theory”, or “Theory of Everything” that will provide a simple and elegant solution to all forces, particles, and concepts in science.  Throughout history, the brightest of minds have been predicting the end of scientific inquiry.  In 1871, James Clerk Maxwell lamented the sentiment of the day which he represented by the statement “in a few years, all great physical constants will have been approximately estimated, and that the only occupation which will be left to men of science will be to carry these measurements to another place of decimals.”

Yet, why does it always seem like the closer we get to the answers, the more monkey wrenches get thrown in the way?  In today’s world, these include strange particles that don’t fit the model.  And dark matter.  And unusual gravitational aberrations in distant galaxies.

Perhaps we need a dose of humility.  Perhaps the universe, or multiverse, or whatever term is being used these days to denote “everything that is out there” is just too far beyond our intellectual capacity.  Before you call me out on this heretical thought, consider…

The UK’s Astronomer Royal Sir Martin Rees points out that “a chimpanzee can’t understand quantum mechanics.”  Despite the fact that Richard Feynman claimed that nobody understands quantum mechanics, as Michael Brooks points out in his recent article “The limits of knowledge: Things we’ll never understand”, no matter how hard they might try, the comprehension of something like Quantum Mechanics is simply beyond the capacity of certain species of animals.  Faced with this realization and the fact that anthropologists estimate that the most recent common ancestor of both humans and chimps (aka CHLCA) was about 6 million years ago, we can draw a startling conclusion:

There are certainly things about our universe and reality that are completely beyond our ability to comprehend!

My reasoning is as follows. Chimps are certainly at least more intelligent than the CHLCA; otherwise evolution would be working in reverse.  As an upper bound of intelligence, let’s say that CHLCA and chimps are equivalent.  Then, CHLCA was certainly not able to comprehend QM (nor relativity, nor even Newtonian physics), but upon evolving into humans over 8 million years, our new species was able to comprehend these things.  8 million years represents 0.06% of the entire age of the universe (according to what we think we know).  That means that for 99.94% of the total time that the universe and life was evolving up to the current point in time, the most advanced creature on earth was incapable of understand the most rudimentary concepts about the workings of reality and the universe.  And yet, are we to suppose that in the last 0.06% of the time, a species has evolved that can understand everything?  I’m sure you see how unlikely that is.

What if our universe was intelligently designed?  The same argument would probably hold.  For some entity to be capable of creating a universe that continues to baffle us no matter how much we think we understand, that entity must be far beyond our intelligence, and therefore has utilized, in the design, concepts that we can’t hope to understand.

Our only chance for being supremely capable of understanding our world would lie in the programmed reality model.  If the creator of our simulation was us, or even an entity a little more advanced than us, it could lead us along a path of exploration and knowledge discovery that just always seems to be on slightly beyond our grasp.  Doesn’t that idea feel familiar?

chimpscratching185 humanscratching185

Just when you thought Physics couldn’t get any Stranger

Tachyons, entanglement, cold fusion, dark matter, galactic filaments.  Just when you thought physics couldn’t get any stranger…

– THE VERY COLD: Fractional Quantum Hall Effect: When electrons are magnetically confined and cooled to a third of a degree above absolute zero (See more here), they seem to break down into sub-particles that act in synchronization, but with fractional charges, like 1/3, or 3/7.

– THE VERY HIGH PRESSURE: Strange Matter: The standard model of physics includes 6 types of quarks, including the 2 (“up” and “down”) that make up ordinary matter.  Matter that consists of “strange” quarks, aka Strange Matter, would be 10 times as heavy as ordinary matter.  Does it exist?  Theoretically, at very high densities, such as the core of neutron stars, such matter may exist.  A 1998 space shuttle experiment seems to have detected some, but repeat experiments have not yielded the same results.

– THE VERY LARGE DIMENSIONAL: Multidimensional Space: String theories say that we live in a 10-dimensional space, mostly because it is the only way to make quantum mechanics and general relativity play nicely together.  That is, until physicist Garrett Lisi came along and showed how it could be done with eight dimensional space and objects called octonions.  String theorists were miffed, mostly because Lisi is not university affiliated and spends most of his time surfing in Hawaii.

– THE VERY HOT: Quark-Gloun Plasma: Heat up matter to 2 trillion degrees and neutrons and protons fall apart into a plasma of quarks called quark-gluon plasma.  In April of 2005, QGP appeared to have been created at the Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC).

My view on all this is that it is scientific business as usual.  100 years ago, we lived in a smaller world; a world described solely by Newtonian Mechanics, our ordinary everyday view of how the world works.  Then, along came relativity and quantum mechanics.  Technological advances in laboratory equipment and optics allowed us to push the limits of speed and validate Relativity, which ultimately showed that Newtonian Mechanics was just an approximation of the larger, more encompassing theory of Relativity at slow speeds.  Similarly we pushed the limits of probing the very small and validated Quantum Mechanics, which showed that Newtonian Mechanics was just an approximation of the larger, more encompassing theory of Quantum Mechanics at large scales.  In the 1960’s, we pushed the limits of heat and energy, discovered  and found that our Quantum Mechanical / Relativistic Theory of the world was really just an approximation at low temperatures of a larger theory that had to encompass Quantum Chromodynamics.  Now, we are pushing the limits of temperature, or the slowing down of particles, and discovering that there must be an even larger theory that describes the world, that explains the appearance of fractional charges at extremely low temperatures.  Why does this keep happening and where does it end?

Programmed Reality provides an explanation.  In fact, it actually provides two.

In one case, the programmers of our reality created a complex set of physical laws that we are slowly discovering.  Imagine a set of concentric spheres, with each successive level outward representing a higher level scientific theory of the world that encompasses faster speeds, higher temperatures, larger scales, colder temperatures, higher energies, etc.  How deep inside the sphere of knowledge are we now?  Don’t know, but this is a model that puts it in perspective.  It is a technological solution to the philosophy of Deism.

The second possibility is that as we humans push the limits of each successive sphere of physical laws that were created for us, the programmers put in place a patch that opens up the next shell of discovery, not unlike a game.  I prefer this model, for a number of reasons.  First of all, wouldn’t it be a lot more fun and interesting to interact with your creations, rather than start them on their evolutionary path and then pay no further attention?  Furthermore, this theory offers the perfect explanation for all of those scientific experiments that have generated anomalous results that have never been reproducible.  The programmers simply applied the patch before anyone else could reproduce the experiment.

Interestingly, throughout the years, scientists have fooled themselves into thinking that the discovery of everything was right around the corner.  In the mid-20th century, the ultimate goal was the Unified Field Theory.  Now, it is called a TOE, or Theory of Everything.

Let’s stop thinking we’re about to reach the end of scientific inquiry and call each successive theory a TOM, or Theory of More.

Because the only true TOE is Programmed Reality.  QED.

Dark Matter, Parallel Worlds, and Bizarro Neighbors

It turns out that it is very likely that an unseen world is occupying the same space that we do.  What goes on there?  Are there Bizarro humans living with Bizarro pets in Bizarro homes, working at Bizarro jobs, just like we do?

Astronomers who have studied the motion of galaxies and clusters of galaxies have noticed that such large astronomical objects rotate too fast for the amount of matter inferred by their size, distance, and luminosity.  Further, in order for the universe to be flat, as it is observed, there must be much more matter than is currently visible.  In fact, by some estimates, observable matter only accounts for less than 1% of the mass of the universe.  The rest, therefore, must be dark – hence the name “dark matter.”  Many varieties of dark matter have been proposed, including exotic dark matter consisting of various high energy loose particles such as neutrinos and theoretical particles called WIMPs (weakly interacting massive particles).  Also in the menu of candidates for dark matter are big chunky masses called MACHOs (massive compact halo objects – don’t astronomers have a great sense of humor?), which include brown dwarfs, planets, or black holes.  Certain studies of the structure of the early universe, however, have demonstrated that MACHOs can not account for more than a fraction of the total dark matter.

As a result, WIMPs are winning the battle.  Anomalous scientific results from Results from ATIC (Advanced Thin Ionization Calorimeter in Antarctica, PAMELA (an Italian space mission called a Payload for AntiMatter Exploration and Light-nuclei Astrophysics), and INTEGRAL (a European Gamma Ray satellite, INTErnational Gamma-Ray Astrophysics Laboratory) ) are starting to narrow down the kinds of particle that could be responsible.  See Kaluza-Klein particles for more (also see New Scientist article).

Interesting, this has some fascinating implications.  The fact that WIMPs don’t interact means we don’t even know they are there.  Because the measurements imply that they are integrated into our space just like ordinary matter is, they are effectively right next to us and we have no way of detecting them.

But what form are they in?  Is it a sea of particles?  Or do they clump like ordinary matter?  The answer appears to be the latter.  According to Hubble data, dark matter clumps at all magnitudes (see Science Daily article), which means it looks pretty much like ordinary matter.

What does all this mean?  All indications are that there is tons (figuratively speaking) of invisible, undetectable material existing right in our own space.  In fact, by all accounts, there is about 7 times as much as our common ordinary matter.  For all we know, there are dark desks, dark Volvos, and dark versions of Donald Trump’s hair.

intergalactic space Bizarro Trump