Wigner’s Friend likes Digital Consciousness

Apparently your reality may be different than mine. Wait, what???

Several recent studies have demonstrated to an extremely high degree of certainty that objective reality does not exist. This year, adding to the mounting pile of evidence for a consciousness-centric reality, came the results of an experiment that for the first time, tested the highly paradoxical Wigner’s Friend thought experiment. The conclusion was that your reality and my reality can actually be different. I don’t mean different in the sense that your rods and cones have a different sensitivity, or that your brain interprets things differently, but fundamentally intrinsically different. Ultimately, things may happen in your reality that might not happen in my reality and vice versa.

Almost sounds like a dream, doesn’t it? Or like you and I are playing some kind of virtual reality game and the information stream that is coming into your senses via your headset or whatever is different that the information stream coming into mine.

BINGO! That’s Digital Consciousness in a nutshell.

Eugene Paul Wigner received the Nobel Prize for physics in 1963 for his work on quantum mechanics and the structure of the atom. More importantly perhaps, he, along with Max Planck, Neils Bohr, John Wheeler, Kurt Godel, Erwin Schrodinger, and many other forward thinking scientists and mathematicians, opposed the common materialistic worldview shared by most scientists of his day (not to mention, most scientists of today). As such, he was an inspiration for, and a forerunner of consciousness-centric philosophies, such as my Digital Consciousness, Donald Hoffman’s MUI theory, and Tom Campbell’s My Big TOE.

As if Schrodinger’s Cat wasn’t enough to bend people’s minds, Wigner raised the stakes of quantum weirdness in 1961 when he proposed a thought experiment, referred to as “Wigner’s Friend.” In the scenario are two people, let’s say Wigner and his friend. One of them is in an enclosed space, hidden to the other and observes something like Schrodinger’s cat, further hidden in a box. At the time Wigner opens the box the wave function collapses, establishing whether or not the cat is dead. But the cat is still in superposition to Wigner’s friend, outside of the entire subsystem. Only when he opens the door to see Wigner and the result of the cat experiment, does his wave function collapse. Therefore, Wigner and his friend have differing interpretations of when reality become realized; hence different realities.

Fast forward to 2019, and scientists (Massimiliano Proietti, Alexander Pickston, Francesco Graffitti, Peter Barrow, Dmytro Kundys, Cyril Branciard, Martin Ringbauer, and Alessandro Fedrizzi) at Heriot-Watt University in Edinburgh, were finally able to test the paradox using double slits, lasers, and polarizers. The results confirmed Wigner’s hypothesis to a certainty of 5 standard deviations, which essentially means that objective reality doesn’t exist, and your and my realities can differ- to a certainty of 1 in 3.5 million!

Of course, I live for this stuff, because it simply adds one more piece of supporting evidence to my theory, Digital Consciousness. And it adds yet another nail in the coffin of that ancient scientific religion, materialism.

How does it work?

Digital Consciousness asserts that consciousness is primary; hence, all that we can truly know is what we each experience subjectively.  This experiment doesn’t necessarily prove that the fundamental construct of reality is information, but it is a lot more plausible that individual experiences based on virtual simulations are at the root of this paradox rather than, say, a complex violation of Hilbert space, allowing parallel realities based on traditional physical fields to intermingle.  As an analogy, imagine that you are playing an MMORPG (video game with many other simultaneous players) – it isn’t difficult to see how each individual could be having a slightly different experience, based perhaps on their skill level or something.  As information is the carrier of the experience, the information entering the consciousness of one player could easily be slightly different than the information entering the consciousness of another player. This is by far the simplest explanation, and by Occam’s Razor, supports my theory.

Too bad Wigner isn’t alive to see this experiment, or to ponder Digital Consciousness theory. But I’m sure his consciousness is having a good laugh.

 

Will Evolving Minds Delay The AI Apocalypse? – Part II

The idea of an AI-driven Apocalypse is based on AI outpacing humanity in intelligence. The point at which that might happen depends on how fast AI evolves and how fast (or slow) humanity evolves.

In Part I of this article, I demonstrated how, given current trends in the advancement of Artificial Intelligence, any AI Apocalypse, Singularity, or what have you, is probably much further out that the transhumanists would have you believe.

In this part, we will examine the other half of the argument by considering the nature of the human mind and how it evolves. To do so, it is very instructive to consider the nature of the mind as a complex system and also the systemic nature of the environments that minds and AIs engage with, and are therefore measured by in terms of general intelligence or AGI.

David Snowden has developed a framework of categorizing systems called Cynefin. The four types of systems are:

  1. Simple – e.g. a bicycle. A Simple system is a simple deterministic system characterized by the fact that most anyone can make decisions and solve problems regarding such systems – it takes something called inferential intuition, which we all have. If the bicycle seat is loose, everyone knows that to fix it, you must look under the seat and find the hardware that needs tightening.
  2. Complicated – e.g. a car. Complicated systems are also deterministic systems, but unlike Simple systems, solutions to problems in this domain are not obvious and typically require analysis and/or experts to figure out what is wrong. That’s why you take your car to the mechanic and why we need software engineers to fix defects.
  3. Complex – Complex systems, while perhaps deterministic from a philosophical point of view, are not deterministic in any practical sense. No matter how much analysis you apply and no matter how experienced the expert is, they will not be able to completely analyze and solve a problem in a complex system. That is because such systems are subject to an incredibly complex set of interactions, inputs, dependencies, and feedback paths that all change continuously. So even if you could apply sufficient resources toward analyzing the entire system, by the time you got your result, your problem state would be obsolete. Examples of complex systems include ecosystems, traffic patterns, the stock market, and basically every single human interaction. Complex systems are best addressed through holistic intuition, which is something that humans possess when they are very experienced in the applicable domain. Problems in complex systems are best addressed by a method called Probe-Sense-Respond, which consists of probing (doing an experiment designed intuitively), sensing (observing the results of that experiment), and responding (acting on those results by moving the system in a positive direction).
  4. Chaotic – Chaotic systems are rarely occurring situations that are unpredictable because they are novel and therefore don’t follow any known patterns. An example would be the situation in New York City after 9/11. Responding to chaotic systems requires an even different method than with other types of systems. Typically, just taking some definitive form of action may be enough to move the system from Chaotic to Complex. The choice of action is a deeply intuitive decision that may be based on an incredibly deep, rich, and nuanced set of knowledge and experiences.

Complicated systems are ideal for early AI. Problems like the ones analyzed in Stanford’s AI Index, such as object detection, natural language parsing, language translation, speech recognition, theorem proving, and SAT solving are all Complicated systems. AI technology at the moment is focused mostly on such problems, not things in the Complex domain, which are instead best addressed by the human brain. However, as processing speed evolves, and learning algorithms evolve, AI will start addressing issues in the Complex domain. Initially, to program or guide the AI systems toward a good sense-and-respond model a human mind will be needed. Eventually perhaps, armed with vague instructions like “try intuitive experiments from a large set of creative ideas that may address the issue,” “figure out how to identify the metrics that indicate a positive result from the experiment,” “measure those metrics,” and “choose a course of action that furthers the positive direction of the quality of the system,” an AI may succeed at addressing problems in the Complex domain.

The human mind of course already has a huge head start. We are incredibly adept at seeing vague patterns, sensing the non-obvious, seeing the big picture, and drawing from collective experiences to select experiments to address complex problems.

Back to our original question, as we lead AI toward developing the skills and intuition to replicate such capabilities, will we be unable to evolve our thinking as well?

In the materialist paradigm, the brain is the limit for an evolving mind. This is why we think the AI can out evolve us, because the brain capacity is fixed. However, in “Digital Consciousness” I have presented a tremendous set of evidence that this is incorrect. In actuality, consciousness, and therefore the mind, is not emergent from the brain. Instead it exists in a deeper level of reality as shown in the Figure below.

It interacts with a separate piece of ATTI that I call the Reality Learning Lab (RLL), commonly known as “the reality we live in,” but more accurately described as our “apparent physical reality” – “apparent” because it is actually Virtual.

As discussed in my blog on creating souls, All That There Is (ATTI) has subdivided itself into components of individuated consciousness, each of which has a purpose to evolve. How it is constructed, and how the boundaries are formed that make it individuated is beyond our knowledge (at the moment).

So what then is our mind?

Simply put, it is organized information. As Tom Campbell eloquently expressed it, “The digital world, which subsumes the virtual physical world, consists only of organization – nothing else. Reality is organized bits.”

As such, what prevents it from evolving in the deeper reality of ATTI just as fast as we can evolve an AI here in the virtual reality of RLL?

Answer – NOTHING!

Don’t get hung up on the fixed complexity of the brain. All our brain is needed for is to emulate the processing mechanism that appears to handle sensory input and mental activity. By analogy, we might consider playing a virtual reality game. In this game we have an avatar and we need to interact with other players. Imagine that a key aspect of the game is the ability to throw a spear at a monster or to shoot an enemy. In our (apparent) physical reality, we would need an arm and a hand to be able to carry out that activity. But in the game, it is technically not required. Our avatar could be arm-less and when we have the need to throw something, we simply press a key sequence on the keyboard. A spear magically appears and gets hurled in the direction of the monster. Just as we don’t need a brain to be aware in our waking reality (because our consciousness is separate from RLL), we don’t need an arm to project a spear toward an enemy in the VR game.

On the other hand, having the arm on the avatar adds a great deal to the experience. For one thing, it adds complexity and meaning to the game. Pressing a key sequence does not have a lot of variability and it certainly doesn’t provide the player with much control. The ability to hit the target could be very precise, such as in the case where you simply point at the target and hit the key sequence. This is boring, requires little skill and ultimately provides no opportunity to develop a skill. On the other hand, the precision of your attack could be dependent on a random number generator, which adds complexity and variability to the game, but still doesn’t provide any opportunity to improve. Or, the precision of the attack could depend on some other nuance of the game, like secondary key sequences, or timing of key sequences, which, although providing the opportunity to develop a skill, have nothing to do with a consistent approach to throwing something. So, it is much better to have your avatar have an arm. In addition, this simply models the reality that you know, and people are comfortable with things that are familiar.

So it is with our brains. In our virtual world, the digital template that is our brain is incapable of doing anything in the “simulation” that it isn’t designed to do. The digital simulation that is the RLL must follow the rules of RLL physics much the way a “physics engine” provides the rules of RLL physics for a computer game. And these rules extend to brain function. Imagine if, in the 21st century, we had no scientific explanation for how we process sensory input or make mental decisions because there was no brain in our bodies. Would that be a “reality” that we could believe in? So, in our level of reality that we call waking reality, we need a brain.

But that brain “template” doesn’t limit the ability for our mind to evolve any more than the lack of brain or central nervous system prevents a collection of single celled organisms called a slime mold from actually learning.

In fact, there is some good evidence for the idea that our minds are evolving as rapidly as technology. Spiral Dynamics is a model of the evolution of values and culture that can be applied to individuals, institutions, and all of humanity. The figure below depicts a very high level overview of the stages, or memes, depicted by the model.

Spiral Dynamics

Each of these stages represents a shift in values, culture, and thinking, as compared to the previous. Given that it is the human mind that drives these changes, it is fair to say that the progression models the evolution of the human mind. As can be seen by the timeframes associated with the first appearance of each stage of humanity, this is an exponential progression. In fact, this is the same kind of progression that Transhumanists used to prove exponential progression of technology and AI. This exponential progression of mind would seem to defy the logic that our minds, if based on fixed neurological wiring, are incapable of exponential development.

And so, higher level conscious thought and logic can easily evolve in the human mind in the truer reality, which may very well keep us ahead of the AI that we are creating in our little virtual reality. The trick is in letting go of our limiting assumptions that it cannot be done, and developing protocols for mental evolution.

So, maybe hold off on buying those front row tickets to the Singularity.

Will Evolving Minds Delay The AI Apocalypse? – Part I

Stephen Hawking once warned that “the development of full artificial intelligence could spell the end of the human race.” He went on to explain that AI will “take off on its own and redesign itself at an ever-increasing rate,” while “humans, who are limited by slow biological evolution, couldn’t compete and would be superseded.” He is certainly not alone in his thinking, as Elon Musk, for example, cautions that “With artificial intelligence we are summoning the demon.”

In fact, this is a common theme not only in Hollywood, but also between two prominent groups of philosophers and futurists.   One point of view is that Artificial General Intelligence (AGI) will become superintelligent and beyond the control of humans, resulting in all sorts of extinction scenarios (think SkyNet or Grey Goo). The (slightly) more optimistic point of view, held by the transhumanists, is that humanity will merge with advanced AI and form superhumans. So, while biological dumb humanity may go the way of the dodo bird, the new form of human-machine hybrid will continue to advance and rule the universe. By the way, this is supposed to happen around 2045, according to Ray Kurzweil in his 2005 book “The Singularity is Near.”

There are actually plenty of logical and philosophical arguments against these ideas, but this blog is going to focus on something different – the nature of the human mind.

The standard theory is that humans cannot evolve their minds particularly quickly due to the assumption that we are limited by the wiring in our brains. AI, on the other hand, has no such limitations and, via recursive self-improvement, will evolve at a runaway exponential rate, making it inevitable to take over humans at some point in terms of intelligence.

But does this even make sense? Let’s examine both assumptions.

The first assumption is that AI advancements will continue at an exponential pace. This is short-sighted IMHO. Most exponential processes run into negative feedback effects that eventually dampen the acceleration. For example, exponential population growth occurs in bacterial colonies until the environment reaches its carrying capacity and then it levels off. We simply don’t know what the “carrying capacity” is of an AI. In an analogous manner, it has to run in some environment, which may run out of memory, power, or other resources at some point. Moore’s Law, the idea that transistor density doubles every two years, has been applied to many other technology advances, such as CPU speed and networking bit rates, and is the cornerstone of the logic behind the Singularity. However, difficulties in heat dissipation have now slowed down the rate of advances in CPU speed, and Moore’s Law no longer applies. Transistor density is also hitting its limit as transistor junctions are now only a few atoms thick. Paul Allen argues, in his article “The Singularity Isn’t Near,” that the kinds of learning required to move AI ahead do not occur at exponential rates, but rather in an irregular and unpredictable manner. As things get more complex, progress tends to slow, an effect he calls the Complexity Brake.

Let’s look at one example. Deep Blue beat Garry Kasparov in a game in 1996, the first time a machine beat a world Chess champion. Google’s AlphaGo beat a grandmaster at Go for the first time in 2016. In those 20 years, there are 10 2-year doubling cycles in Moore’s Law, which would imply that, if AI were advancing exponentially, the “intelligence” needed to beat a Go master is 1000 times more than the intelligence needed to beat a Chess master. Obviously this is ridiculous. While Go is theoretically a more complex game than Chess because it has many more possible moves, an argument could be made that the intellect and mastery required to become the world champion at each game is roughly the same. So, while the advances in processing speed and algorithmic development (Deep Blue used a brute force algorithm, while AlphaGo did more pattern recognition) were substantial between 1996 and 2016, they don’t really show much advance in “intelligence.”

It would also be insightful to examine some real estimates of AI trends. For some well-researched data, consider Stanford University’s AI Index. Created and launched as a project at Stanford University, the AI Index is an “open, not-for-profit project to track activity and progress in AI.” In their 2017 report,  they identify metrics for the progress made in several areas of Artificial Intelligence, such as object detection, natural language parsing, language translation, speech recognition, theorem proving, and SAT solving. For each of the categories for which there is at least 8 years of data, I normalized the AI performance and calculated the improvements over time and averaged the results (note: I was even careful to invert the data – for example, for a pattern recognition algorithm to improve from 90% accuracy to 95%, this is not a 5% improvement; it is actually a 100% improvement in the ability to reject false positives). The chart below shows that AI is not advancing nearly as quickly as Moore’s Law.

Advancing Artificial Intelligence

Figure 1 – Advancing Artificial Intelligence

In fact, the doubling period is about 6 years instead of 2, which would suggest that we need 3 times as long before hitting the Singularity as compared to Kurzweil’s prediction. Since the 2045 projection for the Singularity occurred in 2005, this would say that we wouldn’t really see it until 2125. That’s assuming that we keep pace with the current rate of growth of AI, and don’t even hit Paul Allen’s Complexity Brake. So, chances are it is much further off than that. (As an aside, according to some futurists, Ray does not have a particularly great success rate for his predictions, even ones that are only 10 years out.

But a lot can happen in 120 years. Unexpected, discontinuous jumps in technology can accelerate the process. Social, economic, and political factors can severely slow it down. Recall how in just 10 years in the 1960s, we figured out how to land a man on the moon. Given the rate at which we were advancing our space technology and applying Moore’s Law (which was in effect at that time), it would not have been unreasonable to expect a manned mission to Mars by 1980. In fact Werner von Braun, the leader of the American rocket team, predicted after the moon landing that we would be on Mars in the early 1980s. But in the wake of the Vietnam debacle, public support for additional investment in NASA waned and the entire space program took a drastic turn. Such factors are probably even more impactful to the future of AI than the limitations of Moore’s Law.

The second assumption we need to examine is that the capacity of the human mind is limited by the complexity of the human brain, and is therefore relatively fixed. We will do that in Part II of this article.

Quantum Retrocausality Explained

A recent quantum mechanics experiment, conducted at the University of Queensland in Australia, seems to defy causal order, baffling scientists. In this post however, I’ll explain why this isn’t anomalous at all; at least, if you come to accept the Digital Consciousness Theory (DCT) of reality. It boils down to a virtually identical explanation that I gave seven years ago to Daryl Bem’s seemingly anomalous precognition studies.

DCT says that subatomic particles are controlled by finite state machines (FSMs), which are tiny components of our Reality Learning Lab (RLL, aka “reality”).  These finite state machines that control the behavior of the atoms or photons in the experiment don’t really come into existence until the measurement is made, which effectively means that the atom or photon doesn’t really exist until it needs to. In RLL, the portion of the system that needs to describe the operation of the laser, the prisms, and the mirrors, at least from the perspective of the observer, is defined and running, but only at a macroscopic level. It only needs to show the observer the things that are consistent with the expected performance of those components and the RLL laws of physics. So, for example, we can see the laser beam. But only when we need to determine something at a deeper level, like the path of a particular photon, is a finite state machine for that proton instantiated. And in these retrocausality experiments, like the delayed choice quantum eraser experiments, and this one done in Queensland, the FSMs only start when the observation is made, which is after the photon has gone through the apparatus; hence, it never really had a path. It didn’t need to. The path can be inferred later by measurement, but it is incorrect to think that that inference was objective reality. There was no path, and so there was no real deterministic order of operation.

There are only the attributes of the photon determined at measurement time, when its finite state machine comes into existence. Again, the photon is just data, described by the attributes of the finite state machine, so this makes complete sense. Programmatically, the FSM did not exist before the individuated consciousness required a measurement because it didn’t need to. Therefore, the inference of “which operation came first” is only that – an inference, not a true history.

So what is really going on?  There are at least three options:

1. Evidence is rewritten after the fact.  In other words, after the photons pass through the experimental apparatus, the System goes back and rewrites all records of the results, so as to create the non-causal anomaly.  Those records consist of the experimenters memories, as well as any written or recorded artifacts.  Since the System is in control of all of these items, the complete record of the past can be changed, and no one would ever know.

2. The System selects the operations to match the results, so as to generate the non-causal anomaly.

3. We live in an Observer-created reality and the entire sequence of events is either planned out or influenced by intent, and then just played out by the experimenter and students.

The point is that it requires a computational system to generate such anomalies; not the deterministic materialistic continuous system that mainstream science has taught us that we live in.

Mystery solved, Digital Consciousness style.

Why the Universe Only Needs One Electron

According to renowned physicist Richard Feynman (recounted during his 1965 Nobel lecture)…

“I received a telephone call one day at the graduate college at Princeton from Professor Wheeler, in which he said, ‘Feynman, I know why all electrons have the same charge and the same mass.’ ‘Why?’ ‘Because, they are all the same electron!’”

John Wheeler’s idea was that this single electron moves through spacetime in a continuous world line like a big knot, while our observation of many identical but separate electrons is just an illusion because we only see a “slice” through that knot. Feynman was quick to point out a flaw in the idea; namely that if this was the case we should see as many positrons (electrons moving backward in time) as electrons, which we don’t.

But Wheeler, also known for his now accepted concepts like wormholes, quantum foam, and “it from bit”, may have been right on the money with this seemingly outlanish idea.

As I have amassed a tremendous set of evidence that our reality is digital and programmatic (some of which you can find here as well as many other blog posts), I will assume that to be the case and proceed from that assumption.

Next, we need to invoke the concept of a Finite State Machine (FSM), which is simply a computational system that is identified by a finite set of states whereby the rules that determine the next state are a function of the current state and one or more input events. The FSM may also generate a number of “outputs” which are also logical functions of the current state.

The following is an abstract example of a finite state machine:

A computational system, like that laptop on your desk that the cat sits on, is by itself a finite state machine. Each clock cycle gives the system a chance to compute a new state, which is defined by a logical combination of the current state and all of the input changes. A video game, a flight simulator, and a trading system all work the same way. The state changes in a typical laptop about 4 billion times per second. It may actually take many of these 250 picosecond clock cycles to result in an observable difference in the output of the program, such as the movement of your avatar on the screen. Within the big complex laptop finite state machines are many others running, such as each of those dozens or hundreds of processes that you see running when you click on your “activity monitor.” And within each of those FSMs are many others, such as the method (or “sub program”) that is invoked when it is necessary to generate the appearance of a new object on the screen.

There is also a concept in computer science called an “instance.” It is similar to the idea of a template. As an analogy, consider the automobile. Every Honda that rolls off the assembly line is different, even if it is the same model with the same color and same set of options. The reason it is different from another with the exact same specifications is that there are microscopic differences in every part that goes into each car. In fact, there are differences in the way that every part is connected between two cars of equal specifications. However, imagine if every car were exactly the same, down to the molecule, atom, particle, string, or what have you. Then we could say that each car is an instance of its template.

This would also be the case in a computer-based virtual reality. Every similar car generated in the computer program is an instance of the computer model of that car, which, by the way, is a finite state machine. Each instance can be given different attributes, however, such as color, loudness, or power. In some cases, such as a virtual racing game where the idea of a car is central to the game, each car may be rather unique in the way that it behaves, or responds to the inputs from the controller, so there may be many different FSMs for these different types of cars. However, for any program, there will be FSMs that are so fundamental that there only needs to be one of that type of object; for example, a leaf.

In our programmatic reality (what I like to call the Reality Learning Lab, or RLL), there are also FSMs that are so fundamental that there only needs to be one FSM for that type of object. And every object of that type is merely an instance of that FSM. Such as an electron.

An electron is fundamental. It is a perfect example of an object that should be modeled by a finite state machine. There is no reason for any two electrons to have different rules of behavior. They may have different starting conditions and different influences throughout their lifetime, but they would react to those conditions and influences with exactly the same rules. Digital Consciousness Theory provides the perfect explanation for this. Electrons are simply instances of the electron finite state machine. There is only one FSM for the electron, just as Wheeler suspected. But there are many instances of it. Each RLL clock cycle will result in the update of the state of each electron instance in our apparent physical reality.

So, in a very real sense, Wheeler was right. There is no need for anything other than the single electron FSM. All of the electrons that we experience are just instances and follow exactly the same rules. Anything else would be inefficient, and ATTI is the ultimate in efficiency.

 

Nick Bostrom Elon Musk Nick Bostrom Elon Musk

OMG can anyone write an article on the simulation hypothesis without focusing on Nick Bostrom and Elon Musk? It’s like writing an article about climate change and only mentioning Al Gore.

Dear journalists who are trying to be edgy and write about cool fringe theories, please pay attention. The idea that we might be living in an illusory world is not novel. Chinese philosopher Zhuangzi wrote about it with his butterfly dream in 369 BC. Plato discussed his cave allegory in 380 BC. The other aspect of simulation theory, the idea that the world is discrete or digital, is equally ancient. Plato and Democritous considered atoms, and therefore the fundamental constructs of reality, to be discrete.

I’m not taking anything away from Nick Bostrom, who is a very intelligent modern philosopher. His 2001 Simulation Argument is certainly thought provoking and deserves its place in the annals of digital philosophy. But it was predated by “The Matrix”. Which was predated by Philip K. Dick’s pronouncement in 1977 that we might be living in a computer-programmed reality. Which was predated by Konrad Zuse’s 1969 work on discrete reality, “Calculating Space.”

And as interesting as Bostrom’s Simulation Argument is, it was a 12-page paper on a single idea. Since then, he has not really evolved his thinking on digital philosophy, preferring instead to concentrate on existential risk and the future of humanity.

Nor am I taking anything away from Elon Musk, a brilliant entrepreneur who latched onto Bostrom’s idea for a few minutes, generated a couple sound bites, and then it was back to solar panels and hyperloops.

But Bostrom, Musk, and the tired old posthuman-generated simulation hypothesis is all that the rank and file of journalists seem to know to write about. It is really sad, considering that Tom Campbell wrote an 800-page treatise on the computational nature of reality. I have written two books on the subject. Both of our material is largely consistent and has evolved the thinking far beyond the idea that we live in a posthuman-generated simulation. In fact, I provide a great deal of evidence that the Bostrom-esque possibility is actually not very likely. And Brian Whitworth has a 10-year legacy of provocative scientific papers on evidence for a programmed reality that are far beyond the speculations of Musk and Bostrom.

The world need to know about these things and Campbell, Whitworth, and I can’t force people to read our books, blogs, and papers. So journalists, with all due respect, please up your simulation game.

New Hints to How our Reality is Created

There is something fascinating going on in the world, hidden deep beneath the noise of Trump, soccer matches, and Game of Thrones. It is an exploration into the nature of reality – what is making the world tick?

To cut to the chase, it appears that our reality is being dynamically generated based on an ultra-sophisticated algorithm that takes into account not just the usual cause/effect context (as materialists believe), and conscious observation and intent (as idealists believe), but also a complex array of reality configuration probabilities so as to be optimally efficient.

Wait, what?

This philosophical journey has its origins in the well-known double slit experiment, originally done by Thomas Young in 1801 to determine that light had wavelike properties. In 1961, the experiment was performed with electrons, which also showed wavelike properties. The experimental setup involved shooting electrons through a screen containing two thin vertical slits. The wave nature of the particles was manifested in the form of an interference pattern on a screen that was placed on the other side of the double slit screen. It was a curious result but confirmed quantum theory. In 1974, the experiment was performed one electron at a time, with the same resulting interference pattern, which showed that it was not the electrons that interfered with each other, but rather a probabilistic spatial distribution function that was followed by the pattern on the screen. Quantum theory predicted that if a detector was placed at each of the slits so as to determine which slit each electron would go through, the interference pattern would disappear and just leave two vertical lines, due to the quantum complementarity principle. This was difficult to create in the lab, but experiments in the 1980s confirmed expectations – that the “which way did the particle go” measurement killed the interference pattern. The mystery was that the mere act of observation seemed to change the results of the experiment.

So, at this point, people who were interested in how the universe works effectively split into two camps, representing two fundamental philosophies that set the foundation for thinking, analysis, hypothesis, and theorizing:

  1. Objective Materialism
  2. Subjective Idealism

A zillion web pages can be found for each category.

The problem is that most scientists, and probably at least 99% of all outspoken science trolls believe in Materialism.  And “believe” is the operative word.  Because there is ZERO proof that Materialism is correct.  Nor is there proof that Idealism is correct.  So, “believe” is all that can be done.  Although, as the massive amount of evidence leans in favor of Idealism, it is fair to say that those believers at least have the scientific method behind them, whereas materialists just have “well gosh, it sure seems like we live in a deterministic world.” What is interesting is that Materialism can be falsified, but I’m not sure that Idealism can be.  The Materialist camp had plenty of theories to explain the paradox of the double slit experiments – alternative interpretations of quantum mechanics, local hidden variables, non-local hidden variables, a variety of loopholes, or simply the notion that the detector took energy from the particles and impacted the results of the experiment (as has been said, when you put a thermometer in a glass of water, you aren’t measuring the temperature of the water, you are measuring the temperature of the water with a thermometer in it.)

Over the years, the double-slit experiment has been progressively refined to the point where most of the materialistic arguments have been eliminated. For example, there is now the delayed choice quantum eraser experiment, which puts the “which way” detectors after the interference screen, making it impossible for the detector to physically interfere with the outcome of the experiment. And, one by one, all of the hidden variable possibilities and loopholes have been disproven. In 2015, several experiments were performed independently that closed all loopholes simultaneously with both photons and electrons. Since all of these various experimental tests over the years have shown that objective realism is false and non-local given the experimenters choices, the only other explanation could be what John Bell called Super-determinism, a universe completely devoid of free will, running like clockwork playing out a fully predetermined script of events. If true, this would bring about the extremely odd result that the universe is set up to ensure that the outcomes of these experiments imply the opposite to how the universe really works. But I digress…

The net result is that Materialism-based theories on reality are being chipped away experiment by experiment.  Those that believe in Materialist dogma are finding themselves being painted into an ever-shrinking philosophical corner. But Idealism-based theories are huge with possibilities, very few of which have been falsified experimentally.

Physicist and fellow digital philosopher, Tom Campbell, has boldly suggested a number of double slit experiments that can probe the nature of reality a little deeper. Tom, like me, believes that consciousness plays a key role in the nature of and creation of our reality. So much so that he believes that the outcome of the double slit experiments is due strictly to the conscious observation of the which-way detector data. In other words, if no human (or “sufficiently conscious” entity) observes the data, the interference pattern should remain. Theoretically, one could save the data to a file, store the file on a disk, hide the disk in a box and the interference pattern would remain on the screen. Open the box a day later and the interference pattern should automatically disappear, effectively rewriting history with the knowledge of the paths of the particles. His ideas have incurred the wrath of the physics trolls, who are quick to point out that regardless of the fact that humans ever read the data, the interference pattern is gone if the detectors record the data. The data can be destroyed, or not even written to a permanent medium, and the interference pattern would be gone. If these claims are true, it does not prove Materialism at all. But it does infer something very interesting.

From this and many many other categories of evidence it is strongly likely that our reality is dynamically being generated. Quantum entanglement, quantum zeno effect, and the observer effect all look very much like artifacts of an efficient system that dynamically creates reality as needed. It is the “as needed” part of this assertion that is most interesting. I shall refer to that which creates reality as “the system.”

Entanglement happens because when a two-particle-generating event occurs, it is efficient to create two particles using the same instance of a finite state machine and, therefore, when it is needed to determine the properties of one, the properties of the other are automatically known, as detailed in my blog post on entanglement. The quantum zeno effect happens because it is more efficient to reset the probability function each time an observation is made, as detailed in my blog post on quantum zeno. And so what about the double slit mystery? To illuminate, see the diagram below.

If the physicists are right, reality comes into existence at point 4 in the diagram. Why would that be? The paths of the particles are apparently not needed for the experience of the conscious observer, but rather to satisfy the consistency of the experiment. The fact that the detector registers the data is enough to create the reality. Perhaps the system “realizes” that it is less efficient to leave hanging experiments all over the place until a human “opens the envelope” than it is to instantiate real electron paths despite the unlikely possibility of data deletion. Makes logical sense to me. But it also indicates a sophisticated awareness of all of the probabilities of how the reality can play out out vis a vis potential human interactions.

The system is really smart.

Disproving the Claim that the LHC Disproves the Existence of Ghosts

Recent articles in dozens of online magazines shout things like: “The LHC Disproves the Existence of Ghosts and the Paranormal.”

To which I respond: LOLOLOLOLOL

There are so many things wrong with this backwards scientific thinking, I almost don’t know where to start.  But here are a few…

1. The word “disproves” doesn’t belong here. It is unscientific at best. Maybe use “evidence against one possible explanation for ghosts” – I can even begin to appreciate that. But if I can demonstrate even one potential mechanism for the paranormal that the LHC couldn’t detect, you cannot use the word “disprove.” And here is one potential mechanism – an unknown force that the LHC can’t explore because its experiments are designed to only measure interactions in the 4 forces physicists are aware of.

The smoking gun is Brian Cox’s statement “If we want some sort of pattern that carries information about our living cells to persist then we must specify precisely what medium carries that pattern and how it interacts with the matter particles out of which our bodies are made. We must, in other words, invent an extension to the Standard Model of Particle Physics that has escaped detection at the Large Hadron Collider. That’s almost inconceivable at the energy scales typical of the particle interactions in our bodies.” So, based on that statement, here are a few more problems…

2. “almost inconceivable” is logically inconsistent with the term “disproves.”

3. “If we want some sort of pattern that carries information about our living cells to persist…” is an invalid assumption. We do not need information about our cells to persist in a traditional physical medium for paranormal effects to have a way to propagate. They can propagate by a non-traditional (unknown) medium, such as an information storage mechanism operating outside of our classically observable means. Imagine telling a couple of scientists just 200 years ago about how people can communicate instantaneously via radio waves. Their response would be “no, that is impossible because our greatest measurement equipment has not revealed any mechanism that allows information to be transmitted in that manner.” Isn’t that the same thing Brian Cox is saying?

4. The underlying assumption is that we live in a materialist reality. Aside from the fact that Quantum Mechanics experiments have disproven this (and yes, I am comfortable using that word), a REAL scientist should allow for the possibility that consciousness is independent of grey matter and create experiments to support or invalidate such hypotheses. One clear possibility is the simulation argument. Out of band signaling is an obvious and easy mechanism for paranormal effects.  Unfortunately, the REAL scientists (such as Anton Zeilinger) are not the ones who get most of the press.

5. “That’s almost inconceivable at the energy scales typical of the particle interactions in our bodies” is also bad logic. It assumes that we fully understand the energy scales typical of the particle interactions in our bodies. If scientific history has shown us anything, it is that there is more that we don’t understand than there is that we do.

lhcghosts

Dolly, Jaws, and Braces – The Latest Mandela Effect

Well, the universe is at it again, messing with our minds. Last year, I wrote a blog about the Berenstein Bears, which at that time was the most recent example of a Mandela Effect. The Mandela Effect seems to be the de facto name for the idea that something that many people remember from the past is somehow changed, or rewritten. It was named for former president of South Africa, Nelson Mandela, whom many people recall having died in a South African prison, which, history now tells us, is untrue. He died, according to all of the historical artifacts in our reality, of natural causes at the ripe old age of 95. I personally have a vague recollection of hearing some news about his demise in prison, but I can’t really place it.

That’s the thing about memories; they are completely fallible. When one remembers something, according to research, one is not remembering the original event, but rather the last time that you recalled that particular memory. As such, memories are subject to the “whisper down the lane” syndrome of changing slightly with every recollection. So, my vague Mandela recollection could easily have morphed from a confluence of news reports and “Mandela Effect” claims that I have heard over the years.

However, that does not at all explain why large numbers of people would have the same memory of something entirely fallacious. Which brings me back to the latest of this genre of anomalies: Did Dolly Have Braces?

The 1979 James Bond film Moonraker featured a character named Jaws, a huge henchman with metal teeth played by the late Richard Kiel. In one scene, Jaws’ Brazilian cable car crashes and he is helped out of the rubble by Dolly, a bespectacled young blonde woman played by the French actress Blanche Ravalec. There is one of those movie moments that any Bond aficionado will recall, when Jaws first looks at Dolly and grins, bearing his mouthful of metal. She looks at him and grins, showing her mouthful of metal braces, and therefore, as the music swells, they fall instantly in love and walk off hand in hand. At least that’s the way we all remember it, myself included. The only problem is that if you watch the scene today, Dolly has no braces!

jaws3  dollynobraces

Those 70s era Bond movies were full of campy moments like this one. It was done to make the audience chuckle – in this case: “ahhh, despite their drastically different looks, they fall in love with each other, because of the braces connection” – and everyone laughs. That was the entire point. But now, the scene simply doesn’t even make sense any more. This is actually a key difference from the Berenstein Bears (I refuse to spell it any other way) Mandela effect. In that one, there was no real corroborating evidence that it ever was “Berenstein” with the exception of all of our fallible memories. In contrast, the Dolly, Jaws, and Braces scenario does have separate corroborating evidence that it was once as we remember it – the very point of the scene itself. In addition, I dug out a 2014 BBC obituary of Richard Kiel that references the movie describing Dolly as “a small, pig-tailed blonde with braces.” I’m sure the BBC checks their facts fairly carefully and wouldn’t typically be subject to mass delusion. Also, someone on Reddit managed to find an image somewhere where Dolly still appears to have braces, but you have to look closely:

dollywithbraces

So, here, it seems, the universe (ATTI, all that there is) is really messing with us, and didn’t even bother to clean up all of the artifacts.

First, a quick comment on the word “universe” – the underlying “real” universe is what i call ATTI (all that there is) to distinguish it from the physical universe that we know and love, but which is actually virtual. This virtual world is all a subjective experience of our true consciousness, which sits somewhere as part of ATTI. Hence ATTI can modify our virtual world, as could another conscious entity within ATTI (who perhaps has an evolved level of access). I’m not sure which of these is messing with the historical artifacts, but either is very possible. It would be analogous to being a programmer of a multi-player virtual reality fantasy game, and deciding to go back into the game and replace all of the pine trees with palm trees. The players would certainly notice, but they would think that there was a patch applied to the game for some reason and wouldn’t really give it a second though because they realize the game is virtual. The only reason the Mandela effect freaks us out when we discover one, like Dolly’s braces, is because we don’t realize our reality is virtual.

As I post this, it feels like I am documenting something significant.  However, I realize that tomorrow, this post may be gone.  Or perhaps the references that I listed to Dolly with braces will have disappeared, and along with them, the original sources.  And closed-minded science snobs like Bill Nye and Neil deGrasse Tyson will say it always was that way.

Note: I sometimes make a few changes to these blog posts when I realize that I can be more clear about something.  So if you notice something different the second time you read it, it probably isn’t because of the Mandela effect (but it could be 🙂 ).  Also, for those who haven’t read my original blog on this effect, I will repeat the explanation for Dolly, courtesy of digital consciousness theory:

The flaw is in the assumption that “we” are all in the same reality. “We,” as has been discussed countless times in this blog and in my book, are experiencing a purely subjective experience. It is the high degree of consensus between each of us “conscious entities” that fools us into thinking that our reality is objective and deterministic. Physics experiments have proven beyond a reasonable doubt that it is not.

So what is going on?

My own theory, Digital Consciousness (fka “Programmed Reality”), has a much better, comprehensive, and perfectly consistent explanation (note: this has the same foundation as Tom Campbell’s theory, “My Big TOE”). See the figure below.

ATTI

“We” are each a segment of organized information in “all that there is” (ATTI). Hence, we feel individual, but are connected to the whole. (No time to dive into how perfectly this syncs with virtually every spiritual experience throughout history, but you probably get it.) The “Reality Learning Lab” (RLL) (Campbell) is a different set of organized information within ATTI. The RLL is what we experience every day while conscious. (While meditating, or in deep sleep, we are connected elsewhere) It is where all of the artifacts representing Jaws and Dolly exist. It is where various “simulation” timelines run. The information that represents our memories is in three places:

  1. The “brain” part of the simulation. Think of this as our cache.
  2. The temporary part of our soul’s record (or use the term “spirit”, “essence”, “consciousness”, “Being”, or whatever you prefer – words don’t matter), which we lose when we die. This is the stuff our “brain” has full access to, especially when our minds are quiet.
  3. The permanent part of our soul’s record; what we retain from life to life, what we are here to evolve and improve, what in turn contributes to the inexorable evolution of ATTI. Values and morality are here. Irrelevant details like whether or not Dolly had braces don’t belong.

For some reason, ATTI decided that it made sense to remove Dolly’s braces in all of the artifacts of our reality (DVDs, YouTube clips, etc.) But, for some reason, the consciousness data stores did not get rewritten when that happened, and so we still have long-term recollection of Dolly with braces.

Why? ATTI just messing with us? Random experiment? Glitch?

Maybe ATTI is giving us subtle hints that it exists, that “we” are permanent, so that we use the information to correct our path?

We can’t know. ATTI is way beyond our comprehension.

Collapsing the Objective Collapse Theory

When I was a kid, I liked to collect things – coins, baseball cards, leaves, 45s, what have you. What made the category of collectible particularly enjoyable was the size and variety of the sample space. In my adult years, I’ve learned that collections have a downside – where to put everything? – especially as I continue to downsize my living space in trade for more fun locales, greater views, and better access to beaches, mountains, and wine bars. However, I do still sometimes maintain a collection, such as my collection of other people’s theories that attempt to explain quantum mechanics anomalies without letting go of objective materialism. Yeah, I know, not the most mainstream of collections, and certainly nothing I can sell on eBay, but way more fun than stamps.

The latest in this collection is a set of theories called “objective collapse” theories. These theories try to distance themselves from the ickyness (to materialists) of conscious observer-centric theories like the Copenhagen interpretation of quantum mechanics. They also attempt to avoid the ridiculousness of the exponentially explosive reality creation theories in the Many Worlds Interpretations (MWI) category. Essentially, the Objective Collapsers argue that there is a wave function describing the probabilities of properties of objects, but, rather than collapsing due to a measurement or a conscious observation, it collapses on its own due to some as yet undetermined, yet deterministic, process according to probabilities of the wave function.

Huh?

Yeah, I call BS on that. And point simply to the verification of the Quantum Zeno effect.  Particles don’t change state while they are under observation. When you stop observing them, then they change state, not at some random time prior, as the Objective Collapse theories would imply, but at the exact time that you stop observing them. In other words, the timing of the observation is correlated with wave function collapse, completely undermining the argument that it is probabilistic or deterministic according to some hidden variables. Other better-physics-educated individuals than I (aka physicists) have also called BS on Objective Collapse theories due to other things such as the conservation of energy violations. But, of course there is no shortage of physicists calling BS on other physicists’ theories. That, by itself, would make an entertaining collection.

In any case, I would be remiss if I didn’t remind the readers that the Digital Consciousness Theory completely explains all of this stuff. By “stuff,” I mean not just the anomalies, like the quantum zeno effect, entanglement, macroscopic coherence, the observer effect, and quantum retrocausality, but also the debates about microscopic vs. macroscopic, and thought experiments like the time that Einstein asked Abraham Pais whether he really believed that the moon existed only when looked at, to wit:

  • All we can know for sure is what we experience, which is subjective for every individual.
  • We effectively live in a virtual reality, operating in the context of a huge and highly complex digital substrate system. The purpose of this reality is for our individual consciousnesses to learn and evolve and contribute to the greater all-encompassing consciousness.
  • The reason that it feels “physical” or solid and not virtual is due to the consensus of experience that is built into the system.
  • This virtual reality is influenced and/or created by the conscious entities that occupy it (or “live in it” or “play in it”; chose your metaphor)
  • The virtual reality may have started prior to any virtual life developing, or it may have been suddenly spawned and initiated with us avatars representing the various life forms at any point in the past.
  • Some things in the reality need to be there to start; the universe, earth, water, air, and, in the case of the more recent invocation of reality, lots of other stuff. These things may easily be represented in a macroscopic way, because that is all that is needed in the system for the experience. Therefore, there is no need for us to create them.
  • However, other things are not necessary for our high level experience. But they are necessary once we probe the nature of reality, or if we aim to influence our reality. These are the things that are subject to the observer effect. They don’t exist until needed. Subatomic particles and their properties are perfect examples. As are the deep cause and effect relationships between reality elements that are necessary to create the changes that our intent is invoked to bring about.

So there is no need for objective collapse. Things are either fixed (the moon) or potential (the radioactive decay of a particle). The latter are called into existence as needed…

…Maybe

cat