Things We Can’t Feel – The Mystery Deepens

In my last blog “Things We Can’t See”, we explored the many different ways that our eyes, brains, and/or technology can fool us into seeing something that isn’t there or not seeing something that is.

So apparently, our sense of sight is not necessarily the most reliable sense in terms of identifying what is and isn’t in our objective reality.  We would probably suspect that our sense of touch is fairly foolproof; that is, if an object is “there”, we can “feel” it, right?

Not so fast.

First of all, we have a lot of the same problems with the brain as we did with the sense of sight.  The brain processes all of that sensory data from our nerve endings.  How do we know what the brain really does with that information?  Research shows that sometimes your brain can think that you are touching something that you aren’t or vice versa.  People who have lost limbs still have sensations in their missing extremities.  Hypnosis has been shown to have a significant effect in terms of pain control, which seems to indicate the mind’s capacity to override one’s tactile senses.  And virtual reality experiments have demonstrated the ability for the mind to be fooled into feeling something that isn’t there.

In addition, technology can be made to create havoc with our sense of touch, although the most dramatic of such effects are dozens of years into the future.  Let me explain…

Computer Scientist J. Storrs Hall developed the concept of a “Utility Fog.”  Imagine a “nanoscopic” object called a Foglet, which is an intelligent nanobot, capable of communicating with its peers and having arms that can hook together to form larger structures.  Trillions of these Foglets could conceivably fill a room and not be at all noticeable as long as they were in “invisible mode.”  In fact, not only might they be programmed to appear transparent to the sight, but they may be imperceptible to the touch.  This is not hard to imagine, if you allow that they could have sensors that detect your presence.  For example, if you punch your fist into a swarm of nanobots programmed to be imperceptible, they would sense your motion and move aside as you swung your fist through the air.  But at any point, they could conspire to form a structure – an impenetrable wall, for example.  And then your fist would be well aware of their existence.  In this way, technology may be able to have a dramatic effect on our complete ability to determine what is really “there.”

nanobot

But even now, long before nanobot swarms are possible, the mystery really begins, as we have to dive deeply into what is meant by “feeling” something.

Feeling is the result of a part of our body coming in contact with another object.  That contact is “felt” by the interaction between the molecules of the body and the molecules of the object.

Even solid objects are mostly empty space.  If subatomic particles, such as neutrons, are made of solid mass, like little billiard balls, then 99.999999999999% of normal matter would still be empty space.  That is, of course, unless those particles themselves are not really solid matter, in which case, even more of space is truly empty, more about which in a bit.

So why don’t solid objects like your fist slide right through other solid objects like bricks?  Because of the repulsive effect that the electromagnetic force from the electrons in the fist apply against the electromagnetic force from the electrons in the brick.

But what about that neutron?  What is it made of?  Is it solid?  Is it made of the same stuff as all other subatomic particles?

The leading theories of matter do not favor the idea that subatomic particles are like little billiard balls of differing masses.  For example, string theorists speculate that all particles are made of the same stuff; namely, vibrating bits of string.  Except that they each vibrate at different frequencies.  Problem is, string theory is purely theoretical and really falls more in the mathematical domain than the scientific domain, inasmuch as there is no supporting evidence for the theory.  If it does turn out to be true, even the neutron is mostly empty space because the string is supposedly one-dimensional, with a theoretical cross section of a Planck length.

Here’s where it gets really interesting…

Neutrinos are an extremely common yet extremely elusive particle of matter.  About 100 trillion neutrinos generated in the sun pass through our bodies every second.  Yet they barely interact at all with ordinary matter.  Neutrino capture experiments consist of configurations such as a huge underground tank containing 100,000 gallons of tetrachloroethylene buried nearly a mile below the surface of the earth.  100 billion neutrinos strike every square centimeter of the tank per second.  Yet, any particular molecule of tetrachloroethylene is likely to interact with a neutrino only once every 10E36 seconds (which is 10 billion billion times the age of the universe).

The argument usually given for the neutrino’s elusiveness is that they are massless (and therefore not easily captured by a nucleus) and charge-less (and therefore not subject to the electromagnetic force).  Then again, photons are massless and charge-less and are easily captured, to which anyone who has spent too much time in the sun can attest.  So there has to be some other reason that we can’t detect neutrinos.  Unfortunately, given the current understanding of particle physics, no good answer is forthcoming.

And then there is dark matter.  This concept is the current favorite explanation for some anomalies around orbital speeds of galaxies.  Gravity can’t explain the anomalies, so dark matter is inferred.  If it really exists, it represents about 83% of the mass in the universe, but doesn’t interact again with any of the known forces with the exception of gravity.  This means that dark matter is all around us; we just can’t see it or feel it.

So it seems that modern physics allows for all sorts of types of matter that we can’t see or feel.  When you get down to it, the reason for this is that we don’t understand what matter is at all.  According to the standard model of physics, particles should have no mass, unless there is a special quantum field that pervades the universe and gives rise to mass upon interacting with those particles.  Unfortunately, for that to have any credibility, the signature particle, the Higgs boson, would have to exist.  Thus far, it seems to be eluding even the most powerful of particle colliders.  One alternative theory of matter has it being an emergent property of particle fluctuations in the quantum vacuum.

For a variety of reasons, some of which are outlined in “The Universe – Solved!” and many others which have come to light since I wrote that book, I suspect that ultimately matter is simply a property of an entity that is described purely by data and a set of rules, driven by a complex computational mechanism.  Our attempt to discover the nature of matter is synonymous with our attempt to discover those rules and associated fundamental constants (data).

In terms of other things that we can’t perceive, new age enthusiasts might call out ghosts, spirits, auras, and all sorts of other mysterious invisible and tenuous entities.

starwarsghosts

Given that we know that things exist that we can’t perceive, one has to wonder if it might be possible for macroscopic objects, or even macroscopic entities that are driven by similar energies as humans, to be made from stuff that we can only tenuously detect, not unlike neutrinos or dark matter.  Scientists speculate about multiple dimensions and parallel universes via Hilbert Space and other such constructs.  If such things exist (and wouldn’t it be hypocritical of anyone to speculate or work out the math for such things if it weren’t possible for them to exist?), the rules that govern our interaction with them, across the dimensions, are clearly not at all understood.  That doesn’t mean that they aren’t possible.

In fact, the scientific world is filled with trends leading toward the implication of an information-based reality.

In which almost anything is possible.

FTL Neutrinos are not Dead Yet!

So, today superluminal neutrinos are out.  Another experiment called ICARUS, from the same laboratory whence the OPERA results came, recently announced their findings that neutrinos do not travel faster than light.

It is a little surprising how eager scientists were to get that experimental anomaly behind them.  Almost as if the whole idea so threatened the foundation of their world that  they couldn’t wait to jump on the anti-FTL-neutrino bandwagon.  For a complete non-sequitor, I am reminded of the haste with which Oswald was fingered as JFK’s assassin.  No trial needed.  Let’s just get this behind us.

A blog on the Discover Magazine site referred to this CERN announcement as “the nail in the coffin” of superluminal neutrinos.  Nature magazine reported that Adam Falkowski, a physicist from the University of Paris-South said “The OPERA case is now conclusively closed”

Really?

Since when are two conflicting results an indication that one of them is conclusive?  It seems to me that until the reason for OPERA’s superluminal results is determined, the case is still open.

In software engineering, there is such a thing as a non-reproduceable defect.  A record of the defect is opened and if the defect is not reproduceable, it just sits there.  Over time, if the defect is no longer observed, it becomes less and less relevant and the priority of the defect decreases.  Eventually, one assumes that it was due to “user error” or something, and it loses status as a bona fide defect.

The same should hold for anomalous FTL events.  If they are reproduceable, we have new physics.  If not, it is still an anomaly to be investigated and root cause analyzed.

In fact, interestingly enough, the arxiv article shows that the average neutrino speed in the NEW experiment is still .3 ns faster than light speed would predict and more neutrinos were reported faster than the speed of light than slower.  Admittedly, this is well within the experimental error bar, but it does seem to indicate that neutrinos travel at c, the speed of light, which means that they should not have any mass.  Yet other experiments indicate that they do indeed have mass.

And then there was the result of the MINOS experiment in 2007 which also indicated faster than light neutrinos, although not at as statistically significant of a level as with OPERA.

So, we are still left with many neutrino anomalies:

– Two experiments that indicate faster than light speeds.
– Conflicting experiments regarding the possibility of neutrino mass.
– Mysterious transformations of one type of neutrino to another mid-flight.
– And the very nature of their very tenuous interaction with “normal matter,” not unlike dark matter.

Theories abound regarding the possibilities of neutrinos or dark matter existing in, or traveling through, higher dimensions.

How can anyone be so confident that there is a nail in the coffin of any scientific anomaly?

bringoutyerdead

Time to Revise Relativity?: Part 1

Special Relativity.

Causality.

Faster than light (FTL) travel.

Most physicists says that you can only hope for at most two of these three concepts to hold.

Special Relativity has the advantage of 100 years of supporting experimental evidence.

Causality has the advantage of 1000s of years of philosophic thought, and daily experience (at least until very recently – see Rewriting the Past)

Which seems to be bad news for faster than light travel.  But we all so much want FTL travel to be true.  How else are we supposed to communicate with ET?

Well, Special Relativity may have received its first chink in the armor.  Particle physicists at CERN recently released a report on the experimental evidence of FTL neutrinos.  The 6-sigma quality factor reported implies that the margin of error for this experiment is insignificant, meaning that these results may need to be taken seriously.

So, which concept falls by the wayside: Special Relativity (sorry, Albert)?    Or Causality (sorry, Aristotle)?  Alternatively, maybe the “2 outta 3” rule needs revision.

As usual, I have an opinion.

And it is…

1. Special Relativity holds for the moment.  But we need to stop using circular logic for relativistic effects.  We need to stop drawing FTL paths on Minkowski diagrams that are based on the assumption that FTL is impossible.  And, finally, we have to come to terms with the fact that Special Relativity has to do with subluminal speeds and is UNDEFINED at FTL.

2. Causality holds for the moment.  At least in the context of our conventional space-time.  Throw in inter-Hilbert Space travel or Programmed Reality and all bets are off for Causality. (again see Rewriting the Past for more on the latter)

3. Given the caveats in #1, maybe we can get 3 outta 3.

Here’s just one example where it seems to fit:

Imagine a supersonic jet travelling at twice the speed of sound (2S meters/second) in the land of the blind.  A blind observer stands at 10*S meters from the jet at t=0.  At t=0, an audible event (call it Event A, the cause) occurs on the jet, such as an explosion on board the plane.  The sound waves from Event A reach the observer in 10 seconds.  At t=1 second, the entire jet explodes as the gas tanks catch fire (Event B, the effect).  At t=1, the jet is 8*S meters from the observer since it is traveling at 2S, so the observer hears Event B eight seconds later.  In other words, the observer hears event B at t=9 and event A at t=10.  Therefore the observer observes the effect before the cause.

But that doesn’t mean that the effect happened before the cause.  It only appeared to happen that way in the observer’s reference frame.  Similarly, anyone on the jet (who could actually hear things happening outside) would observe a full sequence of events happening backwards in time.  Is this time travel?  No.  No one is going back in time.  They are just experiencing a sequence of events in reverse chronological order happening in someone else’s reference frame.  Is there any reason to assume that the same arguments would not also hold in the domain of light?

In fact, the same thing might happen if you hopped aboard the tachyonic neutrino express.  First of all, I should note that there is some debate about this whole idea of time unfolding in reverse at superluminal speeds.  Much of it stems from the nature of the Lorentz factor:
lorentzfactor

This is the factor that gets applied to time and distance to calculate time dilation and Lorentz contraction effects at relativistic speeds.  It is also the factor applied to mass in general relativity.  It can easily be seen that as the velocity approaches c (the speed of light), the factor under the square root sign approaches zero, causing the Lorentz factor to approach infinity.  For this reason, time stands still, mass goes to infinity, and the apparent size of the rest of the universe shrinks to zero at the speed of light.  Or, more accurately, “apparent size” as you would SEE it.  But, what happens if you go past the speed of light?  In that case, the factor under the square root sign is negative.  For mathematics, this is not allowed for real numbers.  However, trigonometry has a trick, which is to define an entity i that, by definition, is the square root of -1.  Numbers containing i are considered “imaginary” or complex numbers.  In the real world, these numbers actually have a great deal of use in fields like electrical engineering, where they are used to determine the phase between periodic signals, or in physics, where they are used to determine the relative angle between field vectors.  But what they might mean to relativity is really anybody’s guess.  But it is for this reason that many physicists claim that you can’t accelerate past light speed; that is, that it would necessitate mass exceeding infinity or becoming “imaginary”.  Thus, the entire idea of traveling back in time is just one interpretation of what happens when the Lorentz factor goes imaginary.

So, let’s go with that idea on our tachyonic neutrino express, for the moment.  If you had hurtled through space superluminally in 1804 toward Aaron Burr and Alexander Hamilton, you would watch Hamilton “fall up” into a standing position, the bullet flying out of his stomach and back into Aaron Burr’s gun.  The assassination would still have taken place in their reference frame.  Once you arrived in Weehawkin, NJ and got off the transport, your reference frame would have shifted back to theirs.

One might wonder what happens when you land.  Does the sequence of events go forward again, in which case you could predict the future?  No, that would truly violate causality.  What happens is that you have to decelerate to stop, and as you approach light speed, the backwards time effect slows down.  When you cross over into subluminal, it reverses and the events start forward again from whatever point in the “past” was hit at light speed.  Then, you get to watch the events unfold again in the normal temporal direction.  By the time you decelerate and land, you are at the same point in time as Burr’s reference frame, well ahead of the event that you just witnessed.  Hamilton would be dead, of course.  No time travel, no ability to interact with the past.  No grandfather paradox to solve.  All relativity equations still make sense, from the standpoint of the observations that we can make via known observational methods.  We would still experience time dilation and Lorentz contraction up until we hit light speed.  After that, what happens is anybody’s guess.  But I have a theory.

It’s just going to have to wait until Part 2.

einstein_raspberry185 timewarp185